Share this:


TOPIC 1: STATIC ELECTRICITY
Concept of Static Electricity
The Concept of Static Electricity
Explain the concept of static electricity
Static electricity refers to the electric charges stored on a conductor.
The Orign of Charges
Explain the origin of charges
When a plastic pen is rubbed with a cloth, it acquires the property of attracting small bits of paper or light objects. In this case, the plastic pen is said to be electrified.
Electrification by rubbing was observed a long time ago by ancient Greeks. After the discovery of electricity, things were grouped into two groups, electrics and non-electrics. Electrics refer to things which are readily electrified while non-electrics are reverse of the former.
The two Types of Charges
Identify the two types of charges
There are two types of charge:
  1. positive charge
  2. negative charge
Identification of charge
Suspend a polythene rod A rubbed with fur. Bring another polythene rod B rubbed with fur up to the rod A. Take a plastic rod and rub it with fur. Bring the plastic rod to up to the suspended rod A. Repeat the exercise with acetate and glass rod rubbed with silk cloth.
Observation
An electrified polythene rod repels another electrified polythene rod. An acetate rod rubbed with silk repels another acetate rod rubbed with silk cloth but it attracts a plastic rod rubbed with fur.
Explanation
Polythene and plastic when rubbed with fur becomes electrified with the same kind of electricity known as negative electricity (charge).
Acetate and glass when rubbed with silk cloth becomes electrified with the same kind of electricity called positive electricity(charge).
Charging is the process of electrifying a body.
A positively charged body carries positive charges and a negatively charged body carries negative charges.The symbols used for positive and negative charges are + and – respectively.
The Fundamental Law of Static Electricity
State the fundamental law of static electricity
The Fundamental law of electrostatic charges states that:“Like charges repel each other while unlike charges attract each other”
Charging Bodies Using Different Methods
Charge bodies using different methods
In order to understand the process of charging we have to understand the structure of bodies or things. All bodies are made up of extremely small, indestructible bits of matter called atoms.
An atom consists of a nucleus surrounded by electrons. The nucleus consists of proton and neutron.The protons are positively charged while electrons are negatively charged and the neutrons are neutral.
The whole atom is electrically neutral because it contain equal number of protons and electrons.
The following are the methods of charging;

  1. Rubbing
  2. Induction
  3. Contact
Charging by rubbing
A polythene rod rubbed with fur becomes negatively charged.Rubbing results in the transfer of electrons from fur to the polythene rod.
Fur becomes positively charged because some of its electrons are transferred to the polythene rod.The polythene gains excess electrons and hence it becomes negatively charged.
https://sdimg.blob.core.windows.net/images/ShuleDirect/20582/Original/Rubbing_1456632761536.png
Note:It is only the electrons in matter which can be transferred by rubbing.
Charging by induction
A charged polythene rod is held near uncharged copper rod suspended from a cotton thread.
https://sdimg.blob.core.windows.net/images/ShuleDirect/20582/Original/Rubbing.gif_1456632950312.png
The electrons of the copper rod are repelled by the negatively charged polythene rod.Hence the electrons move to the far side of the copper leaving behind a net positive charge on the side facing the polythene rod.
Touch the copper rod with your finger when the charged rod is still in position. The electrons from copper rod flow through your body to the earth.
Leaving it with a net positive charge. Remove the finger from the copper rod and finally remove the charged polythene rod.
The rod has therefore been positively charged by electrostatic induction.The charges that appear on the copper rod are called induced charges.
Charging by contact
A charged body (eg; positively charged metal can) is brought in contact with uncharged body B.
Detection of Charges
The Structure of a Gold-leaf Electroscope
Describe the structure of a gold-leaf electroscope
The instrument used to detect the presence of electric charges is called gold leaf electroscope. It consists of an insulated brass rod with two pieces of thin gold foil at one end and a brass cap at the other end.
When the brass cap is touched with a charged object the leaves of the electroscope spread out. This is because the charge on the object is conducted through the brass cap and the brass rod to the leaves.
http://sdimg.blob.core.windows.net/images/ShuleDirect/20582/Original/physics04-01_1439532687720.jpeg
As they received the same kind of charge, the leaves repel each other and thus spread apart, this is charging by contact.
If you touch the brass cap with your finger, the charge is transferred through your body to the earth and the leaves of the electroscope then collapse together.
Function of an electroscope
  1. Testing for the sign of the charge on the body.
  2. Identifying the insulating properties of materials.
  3. Detecting the presence of charge on a body.
The Sign of Charges
Determine the sign of charges
The true sign on a body has to be determined before use; the instrument that can be used to determine the presence of charge is called an electrophorus.
An electrophorus consists of a circular slab of insulating material (polythene) together with a brass disc (conductor) on an insulating handle.
An electrophorus works by electrostatic insulation and hence can be used to generate positive charges from single negative charges. The charge produced on the insulating slab is negative. The top disc is then placed on it. Since the surface is only in contact at relatively few points, a positive charge is induced on the lower surface and corresponding negative charge is produced on its top surface.
http://sdimg.blob.core.windows.net/images/ShuleDirect/20582/Original/physics04-03_1439532692734.jpeg
The top of the upper disc is then touched briefly using a finger, hereby carrying away the negative charge to the earth; this is called EARTHING.
http://sdimg.blob.core.windows.net/images/ShuleDirect/20582/Original/physics04-02_1439532692038.jpeg
Steps of Charging and Discharging of a Gold-leaf Electroscope
Identify steps of charging and discharging of a gold-leaf electroscope
The polythene slab is charged negative by rubbing it with fur. The brass disc is then placed on top of the slab so that the two charges become induced onto respective materials.
Note:Contact does not negatively charge the disc because it is not flat and makes contact with the slab at a few points only. When the brass disc is touched with a finger, electrons on the upper surface are repelled to the earth.
There is a force of attraction between the metal disc and the base. A spark (electric energy) is normally produced upon their separation. This spark can be used for lighting gas burners in laboratory.
The electrophorus can now be used to charge a gold leaf electroscope.
http://sdimg.blob.core.windows.net/images/ShuleDirect/20582/Original/physics04-04_1439532693138.jpeg
It can be used to charge a gold leaf electroscope by:
  1. Contact
  2. Induction
By contact
Here a positively charged electrophorus is made to touch the brass cap of the gold-leaf electroscope. The leaf of the gold-leaf electroscope diverges.
When a charged electrophorus is brought into contact with the electroscope, the latter gets charged and the leaves diverge. It acquires a negative charge. This is determined using the charged rods. When a positively charged glass rod is brought near the cap. It causes the leaf to collapse.
http://sdimg.blob.core.windows.net/images/ShuleDirect/20582/Original/physics04-06_1439532694098.jpeg
By induction
Induction- is the transfer of opposite effects from one body to another without contact.
In order to obtain a charge of a given sign, the inducing charge must be of an opposite charge. If charge is placed on an insulator at a given location the excess charge will remain at the initial location. The particles of the insulator do not permit the free flow of electrons. Charge present in an insulator or conductor.
http://sdimg.blob.core.windows.net/images/ShuleDirect/20582/Original/physics04-08_1439532693327.jpeg
Discharging a gold leaf electroscope
Having charged a gold leaf electroscope by contact and induction, the same can be discharged effectively through induction.
If while the electroscope is being charged by induction you touch the brass cap, electrons will leave the electroscope through your hand and onto the ground. If the charged metal rod is removed, the electroscope will remain charged. The charge remaining on the electroscope will be the opposite of the charge on the rod.
If a negatively charged object is now brought near the brass cap electrons in the brass cap are repelled and moved down to the leaves. This cancels the positive charge. With no net charge, the leave collapse back together.
If the object is removed, the electrons return to the metal cap leaving the leaves of the electroscope with a net positive charge again and they separate.
http://sdimg.blob.core.windows.net/images/ShuleDirect/20582/Original/physics04-09_1439532687169.jpeg
Conductors and Insulators
Difference between a Conductor and Insulator
Distinguish between a conductor and insulator
Conductors
Are bodies, which readily allow electric charge in motion to flow through them
OR
Are materials that permit some electrons to flow freely from atom to atom within the materials examples are copper, steel, iron, silver and gold.
When there is excess of positive or negative charge on an object made of a conducting material, the conduction electrons will move to minimise the repulsive force.
Insulators
These are bodies, which do not allow electric charges to flow through it. Insulators on the other hand do not allow their electrons to flow freely from at atom to atom; this is because the electrons in their atoms move around their nuclei in various equal magnitudes to the charge on the protons. The electrons are also firmly attracted to the nucleus hence bound to these atoms.
Capacitors
Capacitor is a device which is used for the storage of charges consisting of two conductors, parallel-nearly separated by air or any other dielectric.Dielectric is an insulating medium used between plates of a capacitor.
Mode of Action of a Capacitance
Explain mode of action of a capacitance
Consider two unequal metal cans which were made to stand on the caps of two identical electroscopes.These cans are given equal charges of Q units from an electrophorus disc. The charged disc is lowered inside a can until it touches the bottom. In this way the whole of the charge is given up to the can and goes to the outside.
It will be noticed that the leaf divergence is greater for the small can, showing that it has acquired higher potential than the larger can.In this case, the larger can is said to have a larger capacitance while the smaller can has a lower capacitance.When the two cans are joined by a wire electricity flows from the smaller can to the larger can until potentials are equalized.
The Action of a Capacitor
Explain the action of a capacitor
The positive charge on A induces an equal and opposite charges on opposite sides of B. These induced charges will respectively raise and lower the potential of all points in their neighborhood and in particular they will affect the potential of plate A.
As far as A is connected , however the negative induced charge will have the greater effect. The net result is is that the potential of A is slightly reduced.
B is next earthed either by touching it with a finger or by connecting it to the nearest cold-water pipe. Immediately the leaf shows a great decrease in divergence. This implies a big decrease in potential, and hence a big increase in capacitance of A.The presence of the earthed plate B results in a very large increase in the capacitance of A.
https://sdimg.blob.core.windows.net/images/ShuleDirect/20582/Original/capacitor_1456634450011.png
https://sdimg.blob.core.windows.net/images/ShuleDirect/20582/Original/charges_1456637332678.png
https://sdimg.blob.core.windows.net/images/ShuleDirect/20582/Original/lightningB_1456637993684.png

https://sdimg.blob.core.windows.net/images/ShuleDirect/20582/Original/lightningB_1456638688909.png


EcoleBooks | PHYSICS O LEVEL(FORM TWO) NOTES - TOPIC 1: STATIC ELECTRICITY

subscriber

3 Comments

  • EcoleBooks | PHYSICS O LEVEL(FORM TWO) NOTES - TOPIC 1: STATIC ELECTRICITY

    Colllns vm, March 22, 2023 @ 4:34 pm Reply

    I have already read this

  • EcoleBooks | PHYSICS O LEVEL(FORM TWO) NOTES - TOPIC 1: STATIC ELECTRICITY

    Colllns vm, March 22, 2023 @ 4:32 pm Reply

    Wow I really love this and I have read thiss topic well and understand It

  • EcoleBooks | PHYSICS O LEVEL(FORM TWO) NOTES - TOPIC 1: STATIC ELECTRICITY

    Colllns vm, March 22, 2023 @ 4:31 pm Reply

    Wow I really love this

Leave a Reply

Your email address will not be published. Required fields are marked *

Accept Our Privacy Terms.*